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jan.busa@tuke.sk, Technical University, Košice, Slovakia; 3e-mail: skrivanek@sors.com, SORS
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Native structures of many proteins have cavities.
A number of experiments has shown that changes
in the size and the shape of the cavities influence
considerably the stabilization energy of the protein
structures.

Computational algorithms for detection and
quantitative characterization of the cavities are usu-
ally based on the space filling geometry model of the
protein by Lee and Richards [1] which interprets
a protein as a union of mutually interpenetrating
balls.

The first computational investigation of the cav-
ities has been reported by Lee and Richards [1].
Rashin, et al. [2] have developed a program for
detection of the internal cavities and for prediction
of the positions of buried water molecules. Zhang
and Hermans [3] used the molecular surface calcu-
lation algorithm [4] to calculate energies and free
energies of a water molecule in cavities and discuss
the hydrophobicity of protein cavities. In [5] is de-
scribed an analytically exact method for computing
the metric properties of macromolecules. Later this
method has been applied to study quantitatively the
inaccessible cavities in proteins [6].

Recently we have suggested a new efficient ana-
lytical algorithm for detection and analysis of in-
ternal cavities [7, 8]. The basic idea of the pro-
posed method lies in the construction of a special
enveloping triangulation such that the conclusion if
any point from the space belongs or does not belong
to the cavity depends only on the relation between
the point and the triangulation, see Fig. 1. Our ob-
jective for this work has been to develop our own
cavity detection software for the protein simulation
package SMMP [9] which has been used widely to
study structures and thermal properties of proteins.

Based on this method, we develop an algorithm
and a fortran package, CAVE, for computing vol-
umes and surface areas of cavities in proteins. We
first test our method and algorithm in some artifi-
cial systems of spheres and find that the calculated
results are consistent with exact results. Then we
apply the package to compute volumes and surface
areas of cavities for some protein structures in the
Protein Data Bank. We compare our calculated re-
sults with those obtained by some other methods

Figure 1: 2D analogy for triangulation

and find that our approach is reliable [7].
Electrostatic potential u is described by nonlinear

Poisson-Boltzmann equation:
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Numerical solutions to the Poisson-Boltzmann
equation (both linear and nonlinear form) for
molecules of arbitrary shape and charge distribution
provides, e.g., software DelPhi using finite differ-
ence algorithm [10, 11, 12, 13, 14]. The ‘molecular’
value of dielectric constant ε should be set at all grid
points inside the molecular surface of a molecule.

The idea of molecular surface was defined by [15],
when the authors introduced the contact surface.
The contact surface is the part of the van der Waals
surface that can be touched by a water-sized probe
sphere. Soon afterwards, Richards introduced the
reentrant surface, which together with the contact
surface form the molecular surface [16]. The reen-
trant surface consists of the inward-facing part of
the probe sphere when it is in contact with more
than one atom.
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Figure 2: Potentials calculated for six atoms with
radii ra = 1.501, and probe radius rw = 1.401

Consider the van der Waals space area of a
molecule as the union of a system of intersected
balls Bi representing atoms which are given by their
centers Ci = (xi, yi, zi) in a Carthesian coordinate
system and radii ri. A molecule of solvent is taken
as an additional ball of given radius rs outside of
the van der Waals area which is forbidden to inter-
sect by the solvent sphere. The solvent is allowed
to roll over its outer surfaces at most. The question
is: “How to identify if a given point is or not ac-
cessible to any point of a wandering solvent ball?”
Videlicet, we are looking for an indicator of the part
of space which is inaccessible by solvent sphere fly-
ing around. This area is bounded by the outermost
part of the molecular surface.

In [17] we proposed four tests to identify the posi-
tion of any grid point. The first class of points are
internal points of the van der Walls area. The sec-
ond class consists of such points X = (x, y, z) that
there are two different balls Bi and Bj that are close
to point X and each to other less than diameter 2rs

of the solvent sphere. If point X = (x, y, z) belongs
to the third class then there are three different
balls Bi, Bj , Bk generating a wall triangle that are
close to point X at the distance less than 2rs. The
fourth class is constituted by such points X which
are inside the envelope triangulation (see [7, 8]) but
accessible neither from any outer intersection point
Eijk nor from any arc with radius less than rs on the
outer accessible surface connecting two such points.

Fig. 2 shows potentials calculated for six atoms
with radii ra = 1.501 placed at the distance 3.5 from
the origin on the x, y, and z axes, and for probe ra-
dius rw = 1.401. The results show that there are
significant differences between the potential values
calculated with and without including cavities test
for the fourth class. The recent version of the pro-
gram is not so efficient like the Sanner et al. ap-
proach to the reduced surface construction [20].
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